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Abstract

This paper presents a new, innovative procedure

called point load superposition for determining the

contact stresses in mating gear teeth. It is

believed that this procedure will greatly extend

both the range of applicability and the accuracy of

gear contact stress analyses.

Point load superposition is based upon funda-

mental solutions from the theory of elasticity. It

is an iterative numerical procedure which has dis-

tinct advantages over the classical Hertz method,

the finite-element method (FEM), and over existing

applications with the boundary element method

(BEM). Specifically, friction and sliding effects,

which are either excluded from or difficult to

study with the classical methods, are routinely

handled with the new procedure.

The paper presents the basic theory and algo-

rithms. Several examples are presented. Results

are consistent with those of the classical

theories. Applications with spur gears are

discussed.

Introduction

Gear tooth contact stress is the single most

important factor affecting the life of a gear.

Tooth contact stresses also have a significant

effect upon tooth deformations and thus upon gear

performance under load. However, in spite of their

dominant role in gearing mechanics, contact

stresses are still not well understood and they are

not accurately quantified. Contact stresses are

not nearly as well documented as, for example, root

and fillet stresses.

One of the reasons that gear tooth contact

stresses are not better understood is that the

geometry and kinematics of meshing gear teeth do

not satisfy the assumptions required for the appli-

cation of the classical and standard Hertzion con-

tact stress analysis. I'2'J The Hertz analysis

assumes a contact between frictionless cylinders.

It does not account for noncircular geometry such

as involute geometry, and it does not include the

important friction forces which occur in gear con-

tact away from the pitch point.

Standard finite element procedures are also

unsatisfactory for studying contact stresses.

Contact stresses are in essence stress concentra-

tions which are locally nonlinear. Hence, the

standard finite element procedures need to be

modified through the use of gap elements, large

numbers of elements, and iterative procedures

before they can be accurately applied in the study

of contact stresses. Such modifications, although

feasible, 4 are burdensome and not generally

available.

A relatively new and promising procedure for

contact stress analysis is the boundary element

method. The boundary element method is particu-

larly useful in regions with high stress grad-

ients - as with contact stresses. However, this

method is still under development and applications

with contact stresses also require iterative proce-
s

dures to obtain the contact area geometry.

In this paper we present a procedure dedicated

strictly to contact stress analysis with direct

application in gear tooth contact stress analysis.

It is similar to the boundary element method. It

does not require the restrictive assumptions of the

Hertz analysis. That is, with this method, non-

cylindrical geometry and frictional effects, as

encountered in loaded meshing gears, are readily

accommodated. The method is based upon the point-

load superposition method developed by Paul, 6'='8

and previous unpublished work of Sisera Jayasinghe

at the University of Cincinnati.

Historically, contact stresses have been one

of the most important, most widely studied, and yet

most difficult problems in the theory of elasti-

city. Contact stress analysis can be traced back

to the work of H. Hertz in 1881 I'_'3 who studied the

contact deformation of smooth elastic bodies

pressed together by forces normal to their contact-

ing surfaces. He proposed that the contact region

could be modeled by an elastic half space loaded

over an elliptical area.

References 9 to 22 describe recent attempts to

use the finite element method and the boundary ele-

ment method to determine contact stresses.

The point-load superposition method presented

in this paper has been outlined in a paper pre-

sented at the Health Monitoring for Propulsion

Systems Conference in Cincinnati (1990). 23 The

method is also documented in a recent NASA Con-

tractor Report of the authors. 24

The balance of the paper is divided into nine

parts with the following part summarizing some pre-

liminary results useful in the sequel. The next



three parts present the basic analysis. Numerical

procedures are then discussed followed by some

simple examples. The next part discusses appli-

cation with spur gears. The final two parts con-

tain a discussion and concluding remarks.

Preliminary Considerations

Consider two elastic bodies in contact. Let

the contact region be divided into a mesh of ele-

ments (or cells). Let the forces transmitted

across each cell be represented by a distribution

of concentrated forces acting on an elastic half

space. By using long-established results from the

theory of elasticity, together with the principle

of superposition, the stress distribution and point

displacements due to a cell loading are obtained.

Then, by superposing the results from each cell the

resulting stress and displacement distributions

within the contacting bodies may be obtained.

To develop the analysis consider an elastic

half space with a concentrated normal load as in

Fig. i.

Let P be a typical point within the half

space, located by the polar coordinates (r,@) as

shown. Then the radial and tangential stresses at
25

P are:

2F

_:=- - -- cos 0, a=e = _ee = 0 (i)
_r

In rectangular coordinates, these stresses

have the form:

2F x_z 2F

Gxx ' 6zz = - --

(x2+z2) 2

3 2
z 2F xz

az x w -

(x2+y_)2 _ (x2+z2)2

(2)

Using the stress-strain equations and the

strain-displacement equations, the displacements at

a point P on the surface may be expressed as: z5

2E (3)

l_v 2

u w2F__ In{hl×{
_E

where E and V are the elastic constant and

Poisson's ratio, and where h is the distance to a

reference point of zero displacement along the

z-axis.

In like manner, if there is a concentrated

tangential force G, the stresses at P are:

2G

at= = - __ cos e, G=8 = _88 = 0 (4)
_r

where 0 is now measured from the line of action

of force G. In rectangular coordinates these

stresses are

2G x 3 2G

_×x = - -- -- , _z= = - --

(x2+z2) z

xz 2G x2z

X __, azx -

(x2+z_) 2 _ {x_+z2) 2

(5)

The displacement of a surface point are then

u x = -2G __(I-V2) _n I x { + c,

_E

Uz =G (I-2V)(I+u) (Tj12E

where c is a constant determined from a zero-

displacement reference point.

(6)

Next, consider an elastic half space with a

distributed normal and tangential loading over a

portion of the surface as depicted in Fig. 2.

Then the resulting stresses and displacements

at a typical point P may be obtained by super-

position (integration) of the foregoing results.

Following the analysis of Johnson, zs the stresses

at P are:

2 a

_xx = - _f-b {[zf(s) (×-s) 2

+ g(s) (x-s) 3] /[ (x-s) z + z2]"}ds

2 a

_zz = - _f-b {[z3f(s)

+ z2g(s)(x-s)]/[(x-s) Z + z2]2}ds

_xz 2f.= - ; -b {[z2f(s)(×-s)

+ zg(s>(x-S)Z]/[(x-s) z + zZ]_}ds

(7)

In like manner the tangential and normal dis-

placements of a surface point are: 31

(I-2V)(I+_) [J_-b f(s)ds f_ f(s)ds]u x
2E

- 2(I-_) fib g(s)_nlx-slds+cl
_E

2 ( i-_ 2)

u=- - __ riof(s>,nl×-slds
_E

2E

(8)

where c I and C 2 are Constants to be determined

from the displacement of an arbitrary reference

point.



Application: Triangular Shape

Loading Distribution

Equations (7) and (8) may be used to determine

the effects of the force distribution in the con-

tact region. If the region is divided into a mesh

of elements (or c_lls), then the effects of the

loadings on the individual cells may be super-

imposed. Moreover, the general loading in the con-

tact region may be represented by the superimposed

loadings on the cells. A triangular (that is,

piecewise linear) loading distribution over a cell

forms a convenient basis for modelling the general

loading distribution.

The contribution of a triangular load on an

individual cell to the stress at a typical point

P may be obtained by letting f(x) and g(x) of

Eqs. (7) and {8) have the forms:

f(x) - f0(a-I x l )/a , g(x) (9)

. g0(a- I xl )/a , I xl _ a

where a is the half-width of the cell whose

center is at the origin, and where f0 and go

are the peak triangular normal and tangential load-

ings as depicted in Fig. 3.

By substituting from Eqs. (9) into (7) and by

performing the indicated integrations, the result-
25

ing stresses at P (Fig. 3) are:

fo

g×x " -- [ (x-a)_1^ ÷ _a(x+a)_ 2 _ 2x8 + 2zln(rlr_, r2)!
]

_a

go
+ __ [ (2xln<rlr2/r2) ÷ 2aln(r2/r I)

_a

- 3z(81 + 82 - 20) ]

fo g°z

Gz" . __[ (x_a)01 + (x+a)82 - 2x0] - _(81_a

fo z go

_x_ " - --(81 ÷82 - 28) + --[(x-a)81
_a fFa

+ (x+a)82 - 2x8 + 2zln(rlr2r 2) ]

where rl, r2, r, 8 l, 82 , and 8 are given by

(Fig. 3):

2 )2 2 2 2 2r I - (x-a ÷ z , r 2 - (x+a) + z ,

2 2
r - x + z 2, tan81 - z/(x-a),

tan82 - z/(x+a), tan8 - z/x

+ 82 - 28 )

(i0)

(11)

Similarly, the displacements of a surface

point are:

u x - Ag0[(x+a)_tn(x/a+l) 2 ÷ (x-a)2 | n(x/a-l) 2

- 2x2[n(x/a) 2] + Bf 0 + C 1
(12)

u z - Af0[(x+a)2tn (x/a+l) 2 + (x-a) 2 t n(x/a-l) 2

- 2x2|n(x/a) 2] - Bg 0 + C 2

where C I and C 2 are constants to be determined

from the displacements of a reference point and

where A and B are defined as:

-( I -,Pz)
A m __

2_'Ea

B =

-(l-2P)(l+v)x(a-la/2 I )

Ea

for x > a

for t×l_ a

(13)

Modelinq of Contact Force Distribution

To illustrate how these results can be

superimposed in the contact region, suppose that

the contact force distribution is represented by

the piecewise linear distribution, as in Fig. 4.

Let the contact region be divided into n

equal-width elements (or cells) as shown. Then,

just as the region is discretized so also are the

force and displacement distributions. Let a be

the element half-width. Then the element nodal

coordinates are in multiples of a. That is, the

x-coordinate of node k is:

x k - ka (14)

Let uix and ulz represent the tangential

and normal displacements of node i due to a tri-

angular normal load centered at node j. Then from

Eq. (12), ulx and ulz may be expressed as

(1-2_)(=÷_)
Ulx - - dijf j ,

E (15)

I_V 2

ul, _ (--_--)cijf j

Cij"
[ (k÷l)21n(k+l)2+ [k-l|21n(k-l)Z-2k zlnkz ] I kl>lk=0

[_ 2_, n4 k=±l

(16)

a/2, k>0 1

dlj - _a/2, k<0_

[ 0, k=0j

where k is defined as:

k - i - j
(17)

Equation (15) may be.used to obtain the dis-

placements at node i due to a set of superposed

triangular load distributions centered at each of

the nodes. In this case the terms cljfl and

dlff j are interpreted as sums over 9.



Finally, if there is a horizontal or

tangential loading, an analogous analysis leads to

displacements at node i as:

I-U _ (I-2P)(I+V)

Ulx - (__)cljg _ , ulz d_jgj (18)
E E

where the coefficients C li_ and di_ :r: the same
as those of Eq. (16) and w,_ere there i_ _ sum on j

from 1 to n.

The displacements of Eqs. (15) and (i8) are

measured relating to a convenient reference point,

say the origin of the coordinate axes.

Contact Analysis

Equations (15) and (18) may be used to develop

an iterative procedure for obtaining a detailed and

comprehensive analysis of contact stresses and

deformations.

To illustrate this consider two cylinders

pressed together as in Fig. 5. As the cylinders

are brought together they initially have line con-

tact. Then as they are pressed tighter the line

contact develops into a contact strip.

Figure 6 depicts the contact region after a

finite deformation. The solid curves represent the

deformed surface profiles, and the dashed curves

represent the undeformed, or original profiles.

Consider two points Ql and Q2 relatively

distant from the contact region. Then during the

compression Qt and Q2 move toward the contact

region and toward each other through the displace-

ments dlz and d2z respectively.

Consider two typical matching surface points

PI and P2 separated by a distance h(x). Then

as the deformation proceeds, PI and P2 simulta-

neously move toward each other and deform inward

into thelr respective cylinders. Let Ulz and U2z

(measured as positive into the respective cylin-

ders) represent the z-axis displacements of P
i

and P2 toward Q1 and Q2" Then if F 1 and P2

come into contact, we have

UIz ÷ U2z + h(x) - dlz + d2. - D, (19)

where D is the global compressive displacement
z

of the cylinders. If PI and P2 are outside the

contact region we have

U_, +U_, _ h(x) > D, (20)

Equations (19) and (20) can be used to deter-

mine the extent of the contact region.

If there is no relative horizontal displace-

ment of PI and P2' we have the no-slip condition

UI x . _, (21)

by the friction coefficient so that alternatively

sliding occurs.

Figure 7 depicts the cylinders in contact with

tangential loading. As before P_ and P2 are

matching surface points at the inltiation of con-

tact. When the tangential load G is applied the

distant points QI and Q2 have rigid body dis-

placements d and d relative to O. If thelx _x

displacements of an pld and P2 relative to O are
denoted by Six S2x, the slip S between Px 1

and P2 may be defined as:

Sx " Six - S2x " (U1x - dlx) - (U2x - d=x) (22)

= (U1x - U2x) - (dlx - d2x)

If P_ and P2 are in the nonslip (stick)

region s x is zero, and then

UI x . U2 x . dlx - d2x . D x (23)

where D is the global tangential displacement of
x

the cylinders.

Numerical Procedures

Equations (15) and (18), together with the

constraint equations of the foregoing part, may be

used to determine the nodal normal and tangential

forces f and g . A difficulty which arises

however, Is that t_e extent of the contact region

is not known a-priori. Hence, an iterative pro-

cedure needs to be developed which will determine

the contact region as well as the nodal forces.

For the development of this procedure, it is

convenient to superimpose Eqs. (15) and (18) and

express them in the form:

(I-2U)(I+U) - 1-U. (24)

u°x - Utx E dijfj - --ci_gJE

and

(I-2V)(I+P) - (I-V2).

u°z - ulz " - E dijg_ - E ci_ f"

where coj and d j are defined as

clJ = c19 - coJ and d_j = dlj - doj

(25)

(26)

where c0j and d o are influence coefficients of

the origin (Eqs. (_6) and (17)). _ Then by substi-

tuting from Eqs. (24) and (25) into Eq. (20) we

have

where

X1_ljf j ÷ X2dljg j --b i i, j - O,...,±n (27)

2

(I-V_) (I-V2)

_I " -- + -- and _2 "

E I E 2

When the cylinders are subjected to tangential

loading in addition to the normal loading, the

deformation geometry depends upon the relative mag-

nitudes of the normal and tangential loads. The

tangential loading causes an asymmetric deformation

pattern. This asymmetry, or distortion is limited

(I-2U l) (I+V I)

E I

(l-2U 2) (I÷V 2)

E 2

(28)



with El, UI, E2, and U being the elastic con-

stants of Bodies 1 and 2.

Eqs.

Similarly, for those nodes in the stick region

(24) and (25) together with Eq. (21) lead to

_3dijfj - _ljg j - 0 (29)

i-l,...,m; j=O,...,tn

(I-2UI)(I+UI) (I-2U2)(] ÷U 2)

E I E2

2 2

(l-U_) (l-u 2)

and _4 " -- ÷ --

E l E 2

(30)

Finally, for those nodes in the slip region we

have

gi =-+_fl i = -n,...,p,p+m,...,n

(31)

where the sign is chosen so that the force direc-

tion is opposite to the direction of slip,

In Eqs. (27), (29), and (31) there are 2n + 1

unknown fl and 2n+l unknown gi (i m O,...,±n)--

_hat is 4n + 2 equation. Equations (27), (29),

and (31) constitute 4n + 2 equations. However,

the system is not complete since when i is zero,

Eqs. (27) and (29) are degenerate. Hence, two

additional equations are needed. These are

obtained from global force summation leading to:

F = fiAi and G = giAi

(32)

where A i is the element area associated with node

i.

The numerical procedure is then:

(I) Assume a contact region

(2) Divide the contact region

into elements or cells

(3) Assume a stick region within

the contact region

(4) Solve Eqs. (27), (29), and

(31) for the nodal forces

(5) Adjust the extent of the

contact region by deleting nodes

with negative normal forces

(6) Adjust the stick region using

Eq. (31)

(7) Repeat steps (i) to (6) until

convergence ks obtained

This procedure is dependent upon superposing

the forces from the nodes in the contact region.

Therefore, the method is called point load

superposition.

Example Solutions

To illustrate the efficacy of the method we

first considered two frictionless, steel cylinders

pressed together with a force of I000 Ib per unit

axial length and no tangential loading. The cylin-

ders had radii: i00 and 150 in; elastic modulus:

30x106 ib/in2; and Poisson ratio: 0.3. The cylin-

der surfaces were taken to be frictionless so that

a comparison could be made with the classical Hertz

solution, which assumes frictionless contact.

Table i shows a comparison of numerical

results and the Hertz solution.

Next to examine the effects of friction (and

hence, the consequences of neglecting friction), we

considered two unlubricated cylinders with radii

I00 and 150 in. made of steel and aluminum respec-

tively. Different materials were chosen to illus-

trate the effects of material properties on the

solutions. (The Hertz solution is based upon iden-

tical material properties of the contacting

bodies.) As in the first example, the cylinders

were pressed together with a normal force of i000

ib per unit axial length. The elastic moduli for

steel and aluminum were taken as: 30xlO 6 and

12xlO 6 ib/in. 2 and the Poisson ratios as: 0.3 and

0.33 respectively. The friction coefficient was

assigned as: 0.5 to simulate the unlubricated

surfaces. Table 2 shows a comparison of numerical

results and the Hertz solution. Figure 8 depicts

the loading distribution in the contact region.

Finally, to examine the effects of sliding,

the steel/aluminum cylinders of the previous exam-

ple were also loaded tangentially to produce

sliding. Table 3 shows a comparison of the

numerical results and the Hertzian solution.

Figure 9 shows the normal pressure distri-

bution obtained from the Hertz and numerical solu-

tions. (Observe the shift in the numerical

distribution due to the sliding.) Figures i0 and

ii show the shear stress distributions on the steel

and aluminum cylinders for the Hertz, friction and

sliding cases.

Application with Involute Spur Gears

To study contact stresses in mating gear teeth

we model the teeth as contacting cylinders as

depicted in Figure 12. The radii of the cylinders

depends upon the position of the contact point

along the line of contact.

In Fig. 12 C I and C are the centers of the

meshing gears and P is the pitch point. I I, 12,

O , 02 , P, and O are points along the pressure
line which is tangent to the base circles of the

gears as shown. I l and I_ are at the inter-

sections of the pressure line and lines perpen-

dicular to the pressure line passing through C I

and C 2 respectively. O l and 02 are at the

intersections of the pressure line and the addenda

of the gears. O is a typical contact point along

the pressure line.

Then the base, pitch and addenda circle radii

are given by

rbl " I _iI ' rb2 " _I ' rpl = I _ I '

rp2 -IC--_I , ral -IC--_I , ra2 " IC--_I

(33)



where the subscripts 1 and 2 identify the associ-

ated gear, and the notation I Cl Iii for example,

designates the length of the line segment between

C 1 and I l .

Since these radii are known for a given pair

Of meshing gears, it is convenient to express the

tooth curvatures (and hence, the contacting cylin-

der curvatures) in terms of these radii. From the

properties of the involute profile, the tooth radii

of curvature at the contact point are simply the

distances from the contact point to 11 and 12

respectively.

Consider the following contact positions:

i. Contact at the Pitch Point

In this case the radii of curvature of the

mating tooth surfaces are:

pl o ITTI = clc-Vl _

and

= rpl - rol

Ic-?ql_]II_

= rp2 - rb2

where the subscripts 1 and 2 identify the

associated gear.

2. Contact on the Addendum Circle of Gear 1

(34)

(35)

In this case the radii of curvature are:

r/l -- rbl

P2= iI_q_l - II-_ql - II-_ql

- (rpl + rp2 ) sin# - Pl

(36)

(37)

where # is the pressure angle.

3. Contact on the=_endum Circle of Gear

and

In this case the radii of curvature are:

= ra2 - rb2

. (rpl + rp2 ) sin# - P2

(38)

(39)

4. Contact at Other Points

Cases 2 and 3 are at the contact extremes with

Case I being intermediate. For some other contact

point, the radii of curvature will be different

than these cases, but it can be calculated using

the same procedures as in the above cases.

The developed numerical procedures may now

be used to calculate the contact stresses on the

mating teeth. To illustrate this application, con-

sider two identical spur gears in mesh with the

following properties.

Number of teeth 18

Pitch diameter 3.5433 in.

Face width 0.3937 in.

Pressure angle 20 °

Transmitted load

(tangential)

Elastic modulus

808 ib

30x106 psi

Poisson ratio 0.3

The calculated maximum contact stress and

maximum shear (Von Mises) stress for two different

contact points are presented in Table 4. The high

contact stress at the surface is primarily hydro-

static loading and does not normally produce fail-

ure. The maximum sheer stress which occurs beneath

the surface can initiate crack formation which

leads to pitting fatigue failure.

Discussion

The method employs a double discretation: one

of the contact region, the other of the force

distribution. The execution of the method involves

an iterative procedure to determine the extent of

the contact region. In this way the method is

clearly more laborious than the classical Hertz

method and even elementary finite-element meth-

ods (FEM). In exchange, however, the method is

believed to provide a more accurate and comprehen-

sive analysis than either the Hertz or FEM

techniques.

Although these examples employ bodies with

simple geometries (cylinders), the method outlined

herein is not restricted to simple geometries.

Indeed, there are no restrictions on the geometry

so long as the contacting surfaces are continuous

and geometrically smooth (that is, with continuous

derivatives).

The examples demonstrate the efficacy of the

method. They show that the numerical results are

extremely close to those of the classical Hertz

solutions, for those cases where the Hertz solution

is applicable. Indeed, the stresses are virtually

identical whereas there is a slight difference in

the geometric results - that is, the contact region

width and the location of the maximum shear stress.

(The Hertz solution assumes frictionless static

contact between identical materials.)



Thesecondandthird exampledemonstratethe
significant effectsof friction andsliding in
contactanalysis. Theexamplesalso showthat the
softer materialhaslesserstress.

In addition it is seen that friction and

sliding significantly increase the shear stresses.

Indeed, when there is sliding with a relatively

high friction coefficient, the maximum shear stress

occurs on the surface as opposed to being beneath

the surface (Figs. i0 and Ii).

The conditions of gear tooth contact (Non-

cylindrical surface, friction, and sliding) do not

satisfy the assumptions for Hertz theory. The

point load superposition method is not restricted

by these assumptions. The gear stress results of

Table 4 are believed to be accurate, limited only

by the precision of the descretation.

The method outlined herein is developed for a

two-dimensional analysis with a triangular load on

the individual elements or cells. The triangular

load provides for a piecewise linear representation

of the contact loading. The method can be extended

to higher order load representations (for example,

the use of cubic splines) and to three-dimensional

analysis.

Conclusions

A point load superposition procedure based on

the theory of elasticity has been used to study

contact stresses between elastic bodies, including

meshing spur gear teeth. This method is validated

by comparison with results from the classical Hertz

method for frictionless cylinders in contact. The

following specific conclusions are reached:

i. A new method of contact stress analysis

has been presented. It is a numerical method which

has fewer restrictions than classical procedures.

2. The method is applicable for a broad range

of geometries of the contacting bodies. The con-

tacting bodies may have different material pro-

perties. The contacting surfaces need not be

smooth. Sliding between the contacting surfaces

is also permitted.

3. The accuracy of the method is demonstrated

by a comparison with results from classical methods

for simple cases where the classical method is

applicable.

4. The established efficacy of the method

justifies applications with contacting gear teeth.
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Tablei. - Comparisonof HertzandNumericalSolutionsfor
Contacting Steel Cylinders without Friction

Hertz Numerical
Difference

Item Solution Solution

0.136156 0.137287 0.83%
Width of Contact Region

(in.)

Maximum Normal Pressure
9351.35

(psi)

Maximum Shear Stress (psi) 2808.05

Location of Maximum Shear

on Z-Axis (in.)

0.05310

9358.90

2810.26

0.05352

0.08%

0.08%

0.79%

Table 2. - Comparison of Hertz Solutions (Identical, Frictionless

Materials) and Numerical Solutions for Contacting

Steel/Aluminum Cylinders with Friction (The numbers

in parenthesis refer to the aluminum cylinder)

Hertz Numerical

Item Solution Solution Difference

width of Contact Region 0.18896 0.18873 0.12%
(in.)

Maximum Normal Pressure
6738.12 6810.89 1.08%

(psi)

2081.32 2.95%
Maximum Shear Stress (psi) 2021.43

(2031.28) (0.48%)

Location of Maximum Shear 0.07967 8.1%
0.07369

on Z-Axis (in.) (0.06461) (13%)

Table 3. - Comparison of Hertz Solutions (No Sliding) and Numerical Solu-

tions for Contacting�Sliding, Steel/Aluminum Cylinders

Hertz Numerical

Item Solution Solution Difference

Width of Contact Region (in.) 0.18896 0.19041 0.77%

Maximum Normal Pressure (psi) 6738.12 6737.87 0.00%

Maximum Shear Stress (psi) 2021.43 3365.39 66.4%

Location of Maximum Shear
0.07369 0.00 100%

on Z-Axis (in.)

Shift of Center (in.) 0.00 0.01123 100%

Table 4. - Gear Tooth Stress Results and Comparisons

Pitch Point
Addendum Contact

Contact

Surface Contact Stress (psi) 194,480 286,013

Maximum Shear Stress (psi) 58,407 85,899

Depth to Maximium Shear 0.0056 0.0038

Stress (in.)
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